Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression.

نویسندگان

  • Bernd Schmeck
  • Janina Lorenz
  • Philippe Dje N'guessan
  • Bastian Opitz
  • Vincent van Laak
  • Janine Zahlten
  • Hortense Slevogt
  • Martin Witzenrath
  • Antje Flieger
  • Norbert Suttorp
  • Stefan Hippenstiel
چکیده

Legionella pneumophila causes severe pneumonia. Acetylation of histones is thought to be an important regulator of gene transcription, but its impact on L. pneumophila-induced expression of proinflammatory cytokines is unknown. L. pneumophila strain 130b induced the expression of the important chemoattractant IL-8 and genome-wide histone modifications in human lung epithelial A549 cells. We analyzed the IL-8-promoter and found that histone H4 was acetylated and H3 was phosphorylated at Ser(10) and acetylated at Lys(14), followed by transcription factor NF-kappaB. Recruitment of RNA polymerase II to the IL-8 promoter corresponded with increases in gene transcription. Histone modification and IL-8 release were dependent on p38 kinase and NF-kappaB pathways. Legionella-induced IL-8 expression was decreased by histone acetylase (HAT) inhibitor anacardic acid and enhanced by histone deacetylase (HDAC) inhibitor trichostatin A. After Legionella infection, HATs p300 and CREB-binding protein were time-dependently recruited to the IL-8 promoter, whereas HDAC1 and HDAC5 first decreased and later reappeared at the promoter. Legionella specifically induced expression of HDAC5 but not of other HDACs in lung epithelial cells, but knockdown of HDAC1 or 5 did not alter IL-8 release. Furthermore, Legionella-induced cytokine release, promoter-specific histone modifications, and RNA polymerase II recruitment were reduced in infection with flagellin-deletion mutants. Legionella-induced histone modification as well as HAT-/HDAC-dependent IL-8 release could also be shown in primary lung epithelial cells. In summary, histone acetylation seems to be important for the regulation of proinflammatory gene expression in L. pneumophila infected lung epithelial cells. These pathways may contribute to the host response in Legionnaires' disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flagellin-Deficient Legionella Mutants Evade Caspase-1- and Naip5-Mediated Macrophage Immunity

Macrophages from C57BL/6J (B6) mice restrict growth of the intracellular bacterial pathogen Legionella pneumophila. Restriction of bacterial growth requires caspase-1 and the leucine-rich repeat-containing protein Naip5 (Birc1e). We identified mutants of L. pneumophila that evade macrophage innate immunity. All mutants were deficient in expression of flagellin, the primary flagellar subunit, an...

متن کامل

Caspase Exploitation by Legionella pneumophila

Legionella pneumophila remains a major health concern, especially for hospitalized patients. L. pneumophila in the environment can survive extracellular or as protozoan parasite within amoeba. After human infection it efficiently replicates in alveolar macrophages without activating inflammasome assembly and cleavage of caspase-1. In contrast murine macrophages actively recognize intracellular ...

متن کامل

Legionella pneumophila induces IFNbeta in lung epithelial cells via IPS-1 and IRF3, which also control bacterial replication.

Legionella pneumophila, a Gram-negative facultative intracellular bacterium, causes severe pneumonia (Legionnaires' disease). Type I interferons (IFNs) were so far associated with antiviral immunity, but recent studies also indicated a role of these cytokines in immune responses against (intracellular) bacteria. Here we show that wild-type L. pneumophila and flagellin-deficient Legionella, but ...

متن کامل

Legionella pneumophila-induced NF-kappaB- and MAPK-dependent cytokine release by lung epithelial cells.

Legionella pneumophila causes community-acquired pneumonia with high mortality, but little is known about its interaction with the alveolar epithelium. The aim of this study was to investigate whether L. pneumophila infection of lung epithelial cells (A549) resulted in pro-inflammatory activation. L. pneumophila infection induced liberation of interleukin (IL)-2, -4, -6, -8 and -17, monocyte ch...

متن کامل

Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection

To restrict infection by Legionella pneumophila, mouse macrophages require Naip5, a member of the nucleotide-binding oligomerization domain leucine-rich repeat family of pattern recognition receptors, which detect cytoplasmic microbial products. We report that mouse macrophages restricted L. pneumophila replication and initiated a proinflammatory program of cell death when flagellin contaminate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 181 2  شماره 

صفحات  -

تاریخ انتشار 2008